Journal of Thermal Analysis, Vol. 54 (1998) 467-476

DERIVATION OF TEMPERATURE-MODULATED DSC
THERMAL CONDUCTIVITY EQUATIONS

R. L. Blaine and S. M. Marcus
TA Instruments, Inc. 109 Lukens Drive, New Castle, DE 19720, UsA”

Abstract

One of the benefits of temperature-modulated DSC (TMDSC) is its ability to measure ther-
mal conductivity and thermal diffusivity without DSC cell modifications or additional acces-
sories. Thermal conductivity of solid materials from 0.1 to about 1 W m™' K™ may be meas-
ured. Applications of this approach have been discussed in the literature but no description is
yetavailable concerning the derivation of the working equations. This presentation provides a
detailed derivation of the working equations used to obtain thermal conductivity and thermal
diffusivity from TMDSC data.
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Introduction

TMDSC is a high performance version of traditional differential scanning
calorimetry in which an oscillatory temperature program (modulation) is super-
imposed on the traditional linear heating program. In the TA Instruments em-
bodiment of TMDSC, the resultant oscillatory heat flow signal is deconvoluted
using discrete Fourier transformation into its reversing (heat capacity) and non-
reversing (kinetic) components. The reversing and nonreversing heat flow sig-
nals provide sensitivity and interpretation benefits unavailable in traditional
DSC.

In TMDSC, the ratio of the oscillatory heat flow amplitude to the oscillatory
temperature amplitude yields heat capacity information. Users have found that
the best heat capacity results are obtained when experimental conditions are se-
lected to obtain maximum temperature uniformity across the test specimen.
Small, thin specimens, long oscillation periods and complete encapsulation of
the test specimen in sample pans of high conductivity (aluminum has a conduc-
tivity of about 235 Wm™ K ") [1] produce the best results. When test conditions
lie outside of these guidelines, the accuracy of the measured heat capacity de-
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clines. This is due to the thermal conductivity of the material preventing uniform
temperature conditions across the test specimen,

Alternativity, maximization of this non-uniform temperature condition
(through the use of thick test specimens and the application of the temperature
oscillation to only one side of the test specimen) may be used to measure the ther-
mal conductivity of a solid specimen.

Thermal conductivity information, derived from TMDSC use, is described in
anumber of publications [2—5]. The approach has been applied to neat polymers,
glasses and to filled thermoset composites [2, 3, 6]. The approach has gained suf-
ficient attention that it has been approved as an ASTM standard test method [7].

These publications start with a series of relevant working equations with little
information as to their source. These working equations include:

8LC?
Ko=—=— ()
CoMd’P
for the observed thermal conductivity, and for the true thermal conductivity:
Ko — 2R + (K2~ 4RK )"
K= (2)

2

obtained by correcting for the heat flow shunting of the test specimen by the cor-
rection factor R, where

R=(K.K)'"* - K, 3

Of course, the relationship between thermal diffusivity and thermal conduc-
tivity is well known:

o= )

In these equations: a=thermal diffusivity; C=apparent heat capacity; Cp=spe-
cific heat capacity; d=diameter; K=thermal conductivity; K,=observed thermal
conductivity; Ki=true thermal conductivity; L=length; M=mass; R=correction
factor; P=temperature oscillation period; p=density.

It is purpose of this offering to describe the detailed derivation of these work-
ing equations,

Derivation of the equations is a two step process. The first is based upon the
one dimensional periodic diffusivity cquation which assumes all heat flow is
through the sample. The second takes into account the shunting heat flow of the
purge gas in contact with the sample when the measurement is performed.
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One dimensional thermal conductive model

In a typical measurement, a sinusoidal temperature program, with amplitude
of about £0.5°C and a period of 80's, is applied to one end of the test specimen in
the form of a right circular cylinder or rod, 0.63 mm is diameter and 3.5 mm in
length. The temperature distribution 7T(x,t) along a rod in response to a periodic
temperaturc variation applied to onc cnd of the rod is given, in complex form, by

[8]:
T(x,1) = T(x)e'™ = T(x)exp(io) 5
where

T(x) = Aexp[—x(iw/o)*] + Bexp[x(iw/er)?] (6)

where T is temperature, x is the distance along the rod, 7 is time, i is (=1)"?, @ is

the angular frequency of the periodic temperature variation, o is the thermal dif-
fusivity of the rod, and A and B are constants determined by the boundary condi-
tions.

The first term in Eq. (6) is associated with the propagation of the damped tem-
perature wave down the rod while the second term is due to the reflection of the
wave back from the opposite end.

Substituting the identity i'*=(1+1)/2"" into Eq. (6) yields:

T(x) = Aexp[—x(1 + ) (@/20))"”] + Bexp[x(1 + i)(@/20)] (7N
Defining a new term
Z = (w2a)"”? (8)
and substituting it into Eq. (7) leads to:
T(x) = Acxp[—xZ(1 +1)] + Bexp[xZ(1 + i)] (9)

The temperature gradient along the sample is obtained by taking the deriva-
tive of Eq. (9).

% = ~AZ(1 +i)exp[-xZ(1 + i)] + BZ(1 + Dexp[xZ(1 +1)] =

= Z(1 + i){~Aexp[—xZ(1 + 1)] + Bexp[xZ(1 + i)} (10)

The values for constants A and B are determined by the boundary conditions
at x=0 and x=L, the length of the test specimen; specifically, 1) the amplitude of
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the temperature oscillation at the base of the rod (i.e., x=0) is given by T, and
2) there is no heat flow through the opposite end of the rod (i.e., dQ/df),_ . =0.

Using the first boundary condition, if the amplitude of the applied tempera-
ture at x=0 is defined as T, then Eq. (9) reduces to:

T(0)=T,=A+B (1)

To make use of the second boundary condition, the steady state thermal con-
ductivity equation is used.

dQ d7 (12)
where d7/dx is the steady state temperature gradient through the cross sectional
area a produced by the heat flow dQ/dz.

Setting the heat flow through the opposite end of the rod (i.e., x=L) equal to

zero and substituting this boundary condition into Eq. (12) along with Eq. (10)
yields:

(%1 =0=—KaZ(1 +i){~Aexp[-LZ(1 + i)] + Bexp[LZ(1 + i)]} (13)
=L

Solving Eq. (13) for B yields:
B = Aexp[—2ZL(1 + 1)] (14)

The values for A and B may be derived by substituting Eq. (14) into Eq. (11).

A= L
1 +exp[-2ZL(1 + )] o)
| Toexpl=2ZL(1 + D) (16)

T 1+ exp[—2ZL(1 +1)]

Substituting these values for A and B into Eq. (10) yields:

dar = ZT,(1+ i)—exp[—xZ(l +1)] + exp[xZ(1 + i)]'exp [-2ZL(1 + 1)) (17)
dx 1 +exp[-2ZL(1 + 1)}

Substitution Eq. (17) into Eq. (12):

gg_z: —KaZTy(1 + i)—exp[—xZ(l +1)] + exp[xZ(1 + i)].exp[—ZZL(l +1)] (18)
dt I +exp[-2ZL(1 +1)]

Evaluating Eq. (18) at x=0:
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- —2ZL(1 +1i
90V | _gazry1+ iy 2 epz2ZL( D)) (19)
dr | o 1 + exp[-2ZL(1 + i)]

The square of the amplitude of heat flow is obtained by multiplying Eq. (19)
by its complex conjugate:

2
= —KaZTo(1 + i)
x=0

=1+ exp[-2ZL(1 + 1}]
1 +exp[-2ZL(1 +1)]

do
d¢

=1 +exp[-2ZL(1 —D)] (20)
1+exp[~2ZL(1 = )]

(-KaZTo)(1 - 1)

{=1+exp[-2ZL(1 + D)]}{~1 + exp[-2ZL(1 - D]}
{1 +exp[-2ZL(1 + D)I]1 + exp|-2ZL(1 - i)]]

= (~KaZT)*(1 +1)(1 - i)

The multiplication steps for Eq. (20) include:
(1+)1-1)=2 (21)
while the exponential numerator (=G) is given by:

G ={~1+exp[-2ZL(1 + D)]}~1 + exp[-2ZL(1 — i)]} = (22)
=1 —exp[-2ZL(1 - i)] = exp[-2ZL(1 + i)] + exp[-2ZL(1 + D)]exp[-2ZL(] = )] =
=1 —exp[~2ZLJexp[-2ZLi] — exp[-2ZL]exp[2ZLi] + exp [—2ZL{(1 +i)+(1- i)}‘] =
=1~ exp[~2ZL)(exp[2ZLi] + exp[-2ZLi]) + exp[— 4ZL]

From Euler’s formula [9, 10]:

exp[2ZLi] = cos(2ZL) + isin(2ZL) (23)

and

exp[~2ZLi] = cos(2ZL) — isin(2ZL) (24)
Substituting these identities into Eq. (22):
G=1- exp[—2ZL]{cos(ZZL) +isin(2ZL) + cos(2ZL) — isin(ZZL)} +exp[-4ZL] =

=1 — 2cos(2ZL)exp[-2ZL] + exp[-4ZL] (25)

By a similar process the denominator (=D) of Eq. (20) is:

D =11+ exp[-2ZL(1 + {1 + exp[-2ZL(1 - i)]} =
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=1 + 2c0s(2ZL)exp[—2ZL] + exp[—4ZL] (26)
Recasting Eq. (20) using Eqs (21), (25) and (26):

2
_ 2(KaZT0)21 — 2¢08(2ZL) exp[-2ZL] + exp[—4ZL] Q7N
1+ 2cos{2ZL) exp[-2ZL] + exp[—4ZL]}

dQ
dt

x=0

Multiplying the numerator and the denominator by exp[4ZL], Eq. (27) be-
comes:

2
= 2(KaZT0)21 — 2c0s(2ZL) exp[2ZL] + exp[4ZL] (28)

0 1+ 2cos(2ZL) exp[2ZL] + exp[4ZL]

a0
dr

If exp[4ZL] is very much greater than 1. which is the case if thermal conduc-
tivity is low, then Eq. (28) reduces to:

2
=2(KaZT,)*

x=0

(29)

49
dt

Actual values of exp[4ZL] range between 3000 and 40 for materials with ther-
mal conductivities ranging between K=0.15and 1.1 Wm™' K, the approximate
range of the application.

The relationship between thermal diffusivity (o) and thermal conductivity
(K) is given by Eq. (4). Substituting this relationship into Eq. (8):

12

and Eq. (30) into Eq. (29):

ol 2.2
= 2K°a°T2 =22 = ka1 20 Cyp (GD

Solving for K:

a¢
dt

K = x=0

= 2 . 32
aZTOZ(DCpp (32)

From traditional MDSC [11], the apparent heat capacity (C) is given by:
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do
C _J_d_rl (33)

T T,
Substituting Eq. (33) into Eq. (32),

0T of
Tgaz(x)Cpp Cppa2

(34)

The density value in Eq. (34) is equal to the specimen mass (M) divided by the
specimen volume (V=aL). In addition, the angular frequency (®) is related to the
experimental period (P) by @=27/P. Substituting these values into Eq. (34)
yields:

_2nc’v

EL (35)
CoaMP

K

This equation is applicable to any appropriate cross sectional area. For the
case of a rod (i.e., cylinder), however, the area a=nd”/4, where d is the diameter
of the rod. Substituting this value into Eq. (24) yields:

2
=-8LC (1)
C,Md’P
This is the working equation used in earlier publications. Sample length (L),
diameter (d) and mass (M) are easily measured physical parameters. The speci-
men’s specific heat capacity (C;) may be measured using the MDSC under the
optimum conditions described previously [11]. The period (P) is an experimen-
tal parameter. And the apparent heat capacity (C) is the measured parameter from
the thermal conductivity optimized experimental conditions.

Determination of shunting conductivity

The one-dimensional calculation above does not take into account heat flow
shunting of the test specimen. The following calculations provide a first approxi-
mation method for accounting for this heat flow. The method uses the measure-
ment of a material having known thermal conductivity to obtain a correction fac-
tor, which is observed to vary with experimental conditions [5]. This correction
factor, however, may be applied to the thermal conductivity measurement of ma-
terials having similar dimensions, measured under similar experimental condi-
tions.

For the calculation of the shunting heat flow, it is assumed that the heat flow
into the gas surrounding the specimen is proportional to the temperature gradient
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at the base of the specimen. The temperature near the base of the rod may be ap-
proximated by the first term in Eq. (9).

T(x) = Aexp[—xZ(1 + 1)] (36)
By the same assumption, Eq. (11) reduces to A=T,, so

T(x) = Toexp[—xZ(1 + i)] (37
Taking the derivative of Eq. (37):

%:—ZTO(I + i)exp[—xZ(1 +i)] (38)

As x approaches zero, the exponential term in Eq. (38) goes to unity.

[gl =—ZTo(1 + 1) (39)
dx -

And as the heat flow into the gas surrounding the rod is proportional to the

temperature gradient on the sample surface at the sample base, by analogy to
Eq. (12) along with Eq. (39):

do) _ o (4T _ :
(dt 1 = Ra(dxlzo =RaZT,(1+1) 40

where R is a scale factor that is dependent on the gas surrounding the sample, the
dimension of the sample and the experimental conditions.
With the assumption of exp[-2ZL]<<1, Eq. (19) becomes:

[‘L—?l = KaZTo(1 + 1) (41)

The assumption of exp[—2ZL]<<1 is more restrictive than the previous condi-
tion of exp[4ZL]>>1 with exp[-2ZL] ranging between 0.018 and 0.16 for the
thermal conductivity range of this application.

The total observed heat flow [(dQ/d?).]. consisting of the sum of the heat flow
through the sample [(dQ/d?).] and the heat flow shunted around the sample
through the gas [(dQ/d¢)]s], is used to calculate the measured ‘true’ thermal con-
ductivity K.

IQQ_ a9
ﬁ_: dt . dr (42)
2

Ko ‘g_Q_
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where K, is the measured effective thermal conductivity at x=0. Substituting
Egs (29), (40) and (41), along with their complex conjugates, into Eq. (42) we
have:

K VAN

Ko [KaZTo(1 - i) + RaZTo(1 - 1)]

2K’ Z°TS _ 2K Z Ty (43)
" (aZTo(Ki+ R+ D-aZTo(Ki+ R =) a2 Z°T2(K, + RYX(1 +i)(1 — i)

The squared term in the denominator is obtained by multiplying the bracketed
quantity by its complex conjugate:

2

K__ K (44)
Ko (Ki+R)
Solving for R:
(K. + R)?
Ko = AP
K,
R = (KK - K, (3)

Thus R can be computed from the values of K and K,. If a sample of known
thermal conductivity (K,) is measured, thereby determining its observed thermal
conductivity (K,), the correction factor R can be calculated. The calculated value
of the correction factor can be applied to subsequent measurements, to compute
the true thermal conductivity from the measured effective thermal conductivity.

Eq. (3) may be recast in the quadric form:

KoKi=(Ki+ R = Ki +2 KR+ R
0=K?+ (2R - Ko)K. +R’ (45)
and solving for K using the positive root of the quadratic formula:

x, = Ko= 2R+ (Ko — 4 RK,)"” 2)

2

where R is the previously calculated correction factor and K, is the measured ef-
fective thermal conductivity of the sample.

Equations (2) and (3) represent the remaining working equations for obtain-
ing thermal conductivity information by MDSC.
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As an item of practical experimental consideration, to obtain the maximum
accuracy in the determination of R, the thermal conductivity of the material cho-
sen to serve as the reference material should be as small as possible, close (but
several times larger than) that of the purge gas. The thermal conductivity of ni-
trogen purge gas is about 0.026 W m™ K™' [12]. Polymer materials are a conven-
ient source of such a material. Polystyrene, with its low thermal conductivity of
about 0.15Wm' K’ [13] and its amorphous form (one does not need to be ter-
ribly concerned about its thermal history), is the reference material of choice.
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